linux_kernel/drivers/mfd/ucb1x00-core.c
Thomas Gleixner 84a14ae8c4 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 178
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 24 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190528170026.162703968@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:29:19 -07:00

780 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/mfd/ucb1x00-core.c
*
* Copyright (C) 2001 Russell King, All Rights Reserved.
*
* The UCB1x00 core driver provides basic services for handling IO,
* the ADC, interrupts, and accessing registers. It is designed
* such that everything goes through this layer, thereby providing
* a consistent locking methodology, as well as allowing the drivers
* to be used on other non-MCP-enabled hardware platforms.
*
* Note that all locks are private to this file. Nothing else may
* touch them.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/mfd/ucb1x00.h>
#include <linux/pm.h>
#include <linux/gpio/driver.h>
static DEFINE_MUTEX(ucb1x00_mutex);
static LIST_HEAD(ucb1x00_drivers);
static LIST_HEAD(ucb1x00_devices);
/**
* ucb1x00_io_set_dir - set IO direction
* @ucb: UCB1x00 structure describing chip
* @in: bitfield of IO pins to be set as inputs
* @out: bitfield of IO pins to be set as outputs
*
* Set the IO direction of the ten general purpose IO pins on
* the UCB1x00 chip. The @in bitfield has priority over the
* @out bitfield, in that if you specify a pin as both input
* and output, it will end up as an input.
*
* ucb1x00_enable must have been called to enable the comms
* before using this function.
*
* This function takes a spinlock, disabling interrupts.
*/
void ucb1x00_io_set_dir(struct ucb1x00 *ucb, unsigned int in, unsigned int out)
{
unsigned long flags;
spin_lock_irqsave(&ucb->io_lock, flags);
ucb->io_dir |= out;
ucb->io_dir &= ~in;
ucb1x00_reg_write(ucb, UCB_IO_DIR, ucb->io_dir);
spin_unlock_irqrestore(&ucb->io_lock, flags);
}
/**
* ucb1x00_io_write - set or clear IO outputs
* @ucb: UCB1x00 structure describing chip
* @set: bitfield of IO pins to set to logic '1'
* @clear: bitfield of IO pins to set to logic '0'
*
* Set the IO output state of the specified IO pins. The value
* is retained if the pins are subsequently configured as inputs.
* The @clear bitfield has priority over the @set bitfield -
* outputs will be cleared.
*
* ucb1x00_enable must have been called to enable the comms
* before using this function.
*
* This function takes a spinlock, disabling interrupts.
*/
void ucb1x00_io_write(struct ucb1x00 *ucb, unsigned int set, unsigned int clear)
{
unsigned long flags;
spin_lock_irqsave(&ucb->io_lock, flags);
ucb->io_out |= set;
ucb->io_out &= ~clear;
ucb1x00_reg_write(ucb, UCB_IO_DATA, ucb->io_out);
spin_unlock_irqrestore(&ucb->io_lock, flags);
}
/**
* ucb1x00_io_read - read the current state of the IO pins
* @ucb: UCB1x00 structure describing chip
*
* Return a bitfield describing the logic state of the ten
* general purpose IO pins.
*
* ucb1x00_enable must have been called to enable the comms
* before using this function.
*
* This function does not take any mutexes or spinlocks.
*/
unsigned int ucb1x00_io_read(struct ucb1x00 *ucb)
{
return ucb1x00_reg_read(ucb, UCB_IO_DATA);
}
static void ucb1x00_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
struct ucb1x00 *ucb = gpiochip_get_data(chip);
unsigned long flags;
spin_lock_irqsave(&ucb->io_lock, flags);
if (value)
ucb->io_out |= 1 << offset;
else
ucb->io_out &= ~(1 << offset);
ucb1x00_enable(ucb);
ucb1x00_reg_write(ucb, UCB_IO_DATA, ucb->io_out);
ucb1x00_disable(ucb);
spin_unlock_irqrestore(&ucb->io_lock, flags);
}
static int ucb1x00_gpio_get(struct gpio_chip *chip, unsigned offset)
{
struct ucb1x00 *ucb = gpiochip_get_data(chip);
unsigned val;
ucb1x00_enable(ucb);
val = ucb1x00_reg_read(ucb, UCB_IO_DATA);
ucb1x00_disable(ucb);
return !!(val & (1 << offset));
}
static int ucb1x00_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
{
struct ucb1x00 *ucb = gpiochip_get_data(chip);
unsigned long flags;
spin_lock_irqsave(&ucb->io_lock, flags);
ucb->io_dir &= ~(1 << offset);
ucb1x00_enable(ucb);
ucb1x00_reg_write(ucb, UCB_IO_DIR, ucb->io_dir);
ucb1x00_disable(ucb);
spin_unlock_irqrestore(&ucb->io_lock, flags);
return 0;
}
static int ucb1x00_gpio_direction_output(struct gpio_chip *chip, unsigned offset
, int value)
{
struct ucb1x00 *ucb = gpiochip_get_data(chip);
unsigned long flags;
unsigned old, mask = 1 << offset;
spin_lock_irqsave(&ucb->io_lock, flags);
old = ucb->io_out;
if (value)
ucb->io_out |= mask;
else
ucb->io_out &= ~mask;
ucb1x00_enable(ucb);
if (old != ucb->io_out)
ucb1x00_reg_write(ucb, UCB_IO_DATA, ucb->io_out);
if (!(ucb->io_dir & mask)) {
ucb->io_dir |= mask;
ucb1x00_reg_write(ucb, UCB_IO_DIR, ucb->io_dir);
}
ucb1x00_disable(ucb);
spin_unlock_irqrestore(&ucb->io_lock, flags);
return 0;
}
static int ucb1x00_to_irq(struct gpio_chip *chip, unsigned offset)
{
struct ucb1x00 *ucb = gpiochip_get_data(chip);
return ucb->irq_base > 0 ? ucb->irq_base + offset : -ENXIO;
}
/*
* UCB1300 data sheet says we must:
* 1. enable ADC => 5us (including reference startup time)
* 2. select input => 51*tsibclk => 4.3us
* 3. start conversion => 102*tsibclk => 8.5us
* (tsibclk = 1/11981000)
* Period between SIB 128-bit frames = 10.7us
*/
/**
* ucb1x00_adc_enable - enable the ADC converter
* @ucb: UCB1x00 structure describing chip
*
* Enable the ucb1x00 and ADC converter on the UCB1x00 for use.
* Any code wishing to use the ADC converter must call this
* function prior to using it.
*
* This function takes the ADC mutex to prevent two or more
* concurrent uses, and therefore may sleep. As a result, it
* can only be called from process context, not interrupt
* context.
*
* You should release the ADC as soon as possible using
* ucb1x00_adc_disable.
*/
void ucb1x00_adc_enable(struct ucb1x00 *ucb)
{
mutex_lock(&ucb->adc_mutex);
ucb->adc_cr |= UCB_ADC_ENA;
ucb1x00_enable(ucb);
ucb1x00_reg_write(ucb, UCB_ADC_CR, ucb->adc_cr);
}
/**
* ucb1x00_adc_read - read the specified ADC channel
* @ucb: UCB1x00 structure describing chip
* @adc_channel: ADC channel mask
* @sync: wait for syncronisation pulse.
*
* Start an ADC conversion and wait for the result. Note that
* synchronised ADC conversions (via the ADCSYNC pin) must wait
* until the trigger is asserted and the conversion is finished.
*
* This function currently spins waiting for the conversion to
* complete (2 frames max without sync).
*
* If called for a synchronised ADC conversion, it may sleep
* with the ADC mutex held.
*/
unsigned int ucb1x00_adc_read(struct ucb1x00 *ucb, int adc_channel, int sync)
{
unsigned int val;
if (sync)
adc_channel |= UCB_ADC_SYNC_ENA;
ucb1x00_reg_write(ucb, UCB_ADC_CR, ucb->adc_cr | adc_channel);
ucb1x00_reg_write(ucb, UCB_ADC_CR, ucb->adc_cr | adc_channel | UCB_ADC_START);
for (;;) {
val = ucb1x00_reg_read(ucb, UCB_ADC_DATA);
if (val & UCB_ADC_DAT_VAL)
break;
/* yield to other processes */
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(1);
}
return UCB_ADC_DAT(val);
}
/**
* ucb1x00_adc_disable - disable the ADC converter
* @ucb: UCB1x00 structure describing chip
*
* Disable the ADC converter and release the ADC mutex.
*/
void ucb1x00_adc_disable(struct ucb1x00 *ucb)
{
ucb->adc_cr &= ~UCB_ADC_ENA;
ucb1x00_reg_write(ucb, UCB_ADC_CR, ucb->adc_cr);
ucb1x00_disable(ucb);
mutex_unlock(&ucb->adc_mutex);
}
/*
* UCB1x00 Interrupt handling.
*
* The UCB1x00 can generate interrupts when the SIBCLK is stopped.
* Since we need to read an internal register, we must re-enable
* SIBCLK to talk to the chip. We leave the clock running until
* we have finished processing all interrupts from the chip.
*/
static void ucb1x00_irq(struct irq_desc *desc)
{
struct ucb1x00 *ucb = irq_desc_get_handler_data(desc);
unsigned int isr, i;
ucb1x00_enable(ucb);
isr = ucb1x00_reg_read(ucb, UCB_IE_STATUS);
ucb1x00_reg_write(ucb, UCB_IE_CLEAR, isr);
ucb1x00_reg_write(ucb, UCB_IE_CLEAR, 0);
for (i = 0; i < 16 && isr; i++, isr >>= 1)
if (isr & 1)
generic_handle_irq(ucb->irq_base + i);
ucb1x00_disable(ucb);
}
static void ucb1x00_irq_update(struct ucb1x00 *ucb, unsigned mask)
{
ucb1x00_enable(ucb);
if (ucb->irq_ris_enbl & mask)
ucb1x00_reg_write(ucb, UCB_IE_RIS, ucb->irq_ris_enbl &
ucb->irq_mask);
if (ucb->irq_fal_enbl & mask)
ucb1x00_reg_write(ucb, UCB_IE_FAL, ucb->irq_fal_enbl &
ucb->irq_mask);
ucb1x00_disable(ucb);
}
static void ucb1x00_irq_noop(struct irq_data *data)
{
}
static void ucb1x00_irq_mask(struct irq_data *data)
{
struct ucb1x00 *ucb = irq_data_get_irq_chip_data(data);
unsigned mask = 1 << (data->irq - ucb->irq_base);
raw_spin_lock(&ucb->irq_lock);
ucb->irq_mask &= ~mask;
ucb1x00_irq_update(ucb, mask);
raw_spin_unlock(&ucb->irq_lock);
}
static void ucb1x00_irq_unmask(struct irq_data *data)
{
struct ucb1x00 *ucb = irq_data_get_irq_chip_data(data);
unsigned mask = 1 << (data->irq - ucb->irq_base);
raw_spin_lock(&ucb->irq_lock);
ucb->irq_mask |= mask;
ucb1x00_irq_update(ucb, mask);
raw_spin_unlock(&ucb->irq_lock);
}
static int ucb1x00_irq_set_type(struct irq_data *data, unsigned int type)
{
struct ucb1x00 *ucb = irq_data_get_irq_chip_data(data);
unsigned mask = 1 << (data->irq - ucb->irq_base);
raw_spin_lock(&ucb->irq_lock);
if (type & IRQ_TYPE_EDGE_RISING)
ucb->irq_ris_enbl |= mask;
else
ucb->irq_ris_enbl &= ~mask;
if (type & IRQ_TYPE_EDGE_FALLING)
ucb->irq_fal_enbl |= mask;
else
ucb->irq_fal_enbl &= ~mask;
if (ucb->irq_mask & mask) {
ucb1x00_reg_write(ucb, UCB_IE_RIS, ucb->irq_ris_enbl &
ucb->irq_mask);
ucb1x00_reg_write(ucb, UCB_IE_FAL, ucb->irq_fal_enbl &
ucb->irq_mask);
}
raw_spin_unlock(&ucb->irq_lock);
return 0;
}
static int ucb1x00_irq_set_wake(struct irq_data *data, unsigned int on)
{
struct ucb1x00 *ucb = irq_data_get_irq_chip_data(data);
struct ucb1x00_plat_data *pdata = ucb->mcp->attached_device.platform_data;
unsigned mask = 1 << (data->irq - ucb->irq_base);
if (!pdata || !pdata->can_wakeup)
return -EINVAL;
raw_spin_lock(&ucb->irq_lock);
if (on)
ucb->irq_wake |= mask;
else
ucb->irq_wake &= ~mask;
raw_spin_unlock(&ucb->irq_lock);
return 0;
}
static struct irq_chip ucb1x00_irqchip = {
.name = "ucb1x00",
.irq_ack = ucb1x00_irq_noop,
.irq_mask = ucb1x00_irq_mask,
.irq_unmask = ucb1x00_irq_unmask,
.irq_set_type = ucb1x00_irq_set_type,
.irq_set_wake = ucb1x00_irq_set_wake,
};
static int ucb1x00_add_dev(struct ucb1x00 *ucb, struct ucb1x00_driver *drv)
{
struct ucb1x00_dev *dev;
int ret;
dev = kmalloc(sizeof(struct ucb1x00_dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->ucb = ucb;
dev->drv = drv;
ret = drv->add(dev);
if (ret) {
kfree(dev);
return ret;
}
list_add_tail(&dev->dev_node, &ucb->devs);
list_add_tail(&dev->drv_node, &drv->devs);
return ret;
}
static void ucb1x00_remove_dev(struct ucb1x00_dev *dev)
{
dev->drv->remove(dev);
list_del(&dev->dev_node);
list_del(&dev->drv_node);
kfree(dev);
}
/*
* Try to probe our interrupt, rather than relying on lots of
* hard-coded machine dependencies. For reference, the expected
* IRQ mappings are:
*
* Machine Default IRQ
* adsbitsy IRQ_GPCIN4
* cerf IRQ_GPIO_UCB1200_IRQ
* flexanet IRQ_GPIO_GUI
* freebird IRQ_GPIO_FREEBIRD_UCB1300_IRQ
* graphicsclient ADS_EXT_IRQ(8)
* graphicsmaster ADS_EXT_IRQ(8)
* lart LART_IRQ_UCB1200
* omnimeter IRQ_GPIO23
* pfs168 IRQ_GPIO_UCB1300_IRQ
* simpad IRQ_GPIO_UCB1300_IRQ
* shannon SHANNON_IRQ_GPIO_IRQ_CODEC
* yopy IRQ_GPIO_UCB1200_IRQ
*/
static int ucb1x00_detect_irq(struct ucb1x00 *ucb)
{
unsigned long mask;
mask = probe_irq_on();
/*
* Enable the ADC interrupt.
*/
ucb1x00_reg_write(ucb, UCB_IE_RIS, UCB_IE_ADC);
ucb1x00_reg_write(ucb, UCB_IE_FAL, UCB_IE_ADC);
ucb1x00_reg_write(ucb, UCB_IE_CLEAR, 0xffff);
ucb1x00_reg_write(ucb, UCB_IE_CLEAR, 0);
/*
* Cause an ADC interrupt.
*/
ucb1x00_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA);
ucb1x00_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA | UCB_ADC_START);
/*
* Wait for the conversion to complete.
*/
while ((ucb1x00_reg_read(ucb, UCB_ADC_DATA) & UCB_ADC_DAT_VAL) == 0);
ucb1x00_reg_write(ucb, UCB_ADC_CR, 0);
/*
* Disable and clear interrupt.
*/
ucb1x00_reg_write(ucb, UCB_IE_RIS, 0);
ucb1x00_reg_write(ucb, UCB_IE_FAL, 0);
ucb1x00_reg_write(ucb, UCB_IE_CLEAR, 0xffff);
ucb1x00_reg_write(ucb, UCB_IE_CLEAR, 0);
/*
* Read triggered interrupt.
*/
return probe_irq_off(mask);
}
static void ucb1x00_release(struct device *dev)
{
struct ucb1x00 *ucb = classdev_to_ucb1x00(dev);
kfree(ucb);
}
static struct class ucb1x00_class = {
.name = "ucb1x00",
.dev_release = ucb1x00_release,
};
static int ucb1x00_probe(struct mcp *mcp)
{
struct ucb1x00_plat_data *pdata = mcp->attached_device.platform_data;
struct ucb1x00_driver *drv;
struct ucb1x00 *ucb;
unsigned id, i, irq_base;
int ret = -ENODEV;
/* Tell the platform to deassert the UCB1x00 reset */
if (pdata && pdata->reset)
pdata->reset(UCB_RST_PROBE);
mcp_enable(mcp);
id = mcp_reg_read(mcp, UCB_ID);
mcp_disable(mcp);
if (id != UCB_ID_1200 && id != UCB_ID_1300 && id != UCB_ID_TC35143) {
printk(KERN_WARNING "UCB1x00 ID not found: %04x\n", id);
goto out;
}
ucb = kzalloc(sizeof(struct ucb1x00), GFP_KERNEL);
ret = -ENOMEM;
if (!ucb)
goto out;
device_initialize(&ucb->dev);
ucb->dev.class = &ucb1x00_class;
ucb->dev.parent = &mcp->attached_device;
dev_set_name(&ucb->dev, "ucb1x00");
raw_spin_lock_init(&ucb->irq_lock);
spin_lock_init(&ucb->io_lock);
mutex_init(&ucb->adc_mutex);
ucb->id = id;
ucb->mcp = mcp;
ret = device_add(&ucb->dev);
if (ret)
goto err_dev_add;
ucb1x00_enable(ucb);
ucb->irq = ucb1x00_detect_irq(ucb);
ucb1x00_disable(ucb);
if (!ucb->irq) {
dev_err(&ucb->dev, "IRQ probe failed\n");
ret = -ENODEV;
goto err_no_irq;
}
ucb->gpio.base = -1;
irq_base = pdata ? pdata->irq_base : 0;
ucb->irq_base = irq_alloc_descs(-1, irq_base, 16, -1);
if (ucb->irq_base < 0) {
dev_err(&ucb->dev, "unable to allocate 16 irqs: %d\n",
ucb->irq_base);
ret = ucb->irq_base;
goto err_irq_alloc;
}
for (i = 0; i < 16; i++) {
unsigned irq = ucb->irq_base + i;
irq_set_chip_and_handler(irq, &ucb1x00_irqchip, handle_edge_irq);
irq_set_chip_data(irq, ucb);
irq_clear_status_flags(irq, IRQ_NOREQUEST);
}
irq_set_irq_type(ucb->irq, IRQ_TYPE_EDGE_RISING);
irq_set_chained_handler_and_data(ucb->irq, ucb1x00_irq, ucb);
if (pdata && pdata->gpio_base) {
ucb->gpio.label = dev_name(&ucb->dev);
ucb->gpio.parent = &ucb->dev;
ucb->gpio.owner = THIS_MODULE;
ucb->gpio.base = pdata->gpio_base;
ucb->gpio.ngpio = 10;
ucb->gpio.set = ucb1x00_gpio_set;
ucb->gpio.get = ucb1x00_gpio_get;
ucb->gpio.direction_input = ucb1x00_gpio_direction_input;
ucb->gpio.direction_output = ucb1x00_gpio_direction_output;
ucb->gpio.to_irq = ucb1x00_to_irq;
ret = gpiochip_add_data(&ucb->gpio, ucb);
if (ret)
goto err_gpio_add;
} else
dev_info(&ucb->dev, "gpio_base not set so no gpiolib support");
mcp_set_drvdata(mcp, ucb);
if (pdata)
device_set_wakeup_capable(&ucb->dev, pdata->can_wakeup);
INIT_LIST_HEAD(&ucb->devs);
mutex_lock(&ucb1x00_mutex);
list_add_tail(&ucb->node, &ucb1x00_devices);
list_for_each_entry(drv, &ucb1x00_drivers, node) {
ucb1x00_add_dev(ucb, drv);
}
mutex_unlock(&ucb1x00_mutex);
return ret;
err_gpio_add:
irq_set_chained_handler(ucb->irq, NULL);
err_irq_alloc:
if (ucb->irq_base > 0)
irq_free_descs(ucb->irq_base, 16);
err_no_irq:
device_del(&ucb->dev);
err_dev_add:
put_device(&ucb->dev);
out:
if (pdata && pdata->reset)
pdata->reset(UCB_RST_PROBE_FAIL);
return ret;
}
static void ucb1x00_remove(struct mcp *mcp)
{
struct ucb1x00_plat_data *pdata = mcp->attached_device.platform_data;
struct ucb1x00 *ucb = mcp_get_drvdata(mcp);
struct list_head *l, *n;
mutex_lock(&ucb1x00_mutex);
list_del(&ucb->node);
list_for_each_safe(l, n, &ucb->devs) {
struct ucb1x00_dev *dev = list_entry(l, struct ucb1x00_dev, dev_node);
ucb1x00_remove_dev(dev);
}
mutex_unlock(&ucb1x00_mutex);
if (ucb->gpio.base != -1)
gpiochip_remove(&ucb->gpio);
irq_set_chained_handler(ucb->irq, NULL);
irq_free_descs(ucb->irq_base, 16);
device_unregister(&ucb->dev);
if (pdata && pdata->reset)
pdata->reset(UCB_RST_REMOVE);
}
int ucb1x00_register_driver(struct ucb1x00_driver *drv)
{
struct ucb1x00 *ucb;
INIT_LIST_HEAD(&drv->devs);
mutex_lock(&ucb1x00_mutex);
list_add_tail(&drv->node, &ucb1x00_drivers);
list_for_each_entry(ucb, &ucb1x00_devices, node) {
ucb1x00_add_dev(ucb, drv);
}
mutex_unlock(&ucb1x00_mutex);
return 0;
}
void ucb1x00_unregister_driver(struct ucb1x00_driver *drv)
{
struct list_head *n, *l;
mutex_lock(&ucb1x00_mutex);
list_del(&drv->node);
list_for_each_safe(l, n, &drv->devs) {
struct ucb1x00_dev *dev = list_entry(l, struct ucb1x00_dev, drv_node);
ucb1x00_remove_dev(dev);
}
mutex_unlock(&ucb1x00_mutex);
}
#ifdef CONFIG_PM_SLEEP
static int ucb1x00_suspend(struct device *dev)
{
struct ucb1x00_plat_data *pdata = dev_get_platdata(dev);
struct ucb1x00 *ucb = dev_get_drvdata(dev);
struct ucb1x00_dev *udev;
mutex_lock(&ucb1x00_mutex);
list_for_each_entry(udev, &ucb->devs, dev_node) {
if (udev->drv->suspend)
udev->drv->suspend(udev);
}
mutex_unlock(&ucb1x00_mutex);
if (ucb->irq_wake) {
unsigned long flags;
raw_spin_lock_irqsave(&ucb->irq_lock, flags);
ucb1x00_enable(ucb);
ucb1x00_reg_write(ucb, UCB_IE_RIS, ucb->irq_ris_enbl &
ucb->irq_wake);
ucb1x00_reg_write(ucb, UCB_IE_FAL, ucb->irq_fal_enbl &
ucb->irq_wake);
ucb1x00_disable(ucb);
raw_spin_unlock_irqrestore(&ucb->irq_lock, flags);
enable_irq_wake(ucb->irq);
} else if (pdata && pdata->reset)
pdata->reset(UCB_RST_SUSPEND);
return 0;
}
static int ucb1x00_resume(struct device *dev)
{
struct ucb1x00_plat_data *pdata = dev_get_platdata(dev);
struct ucb1x00 *ucb = dev_get_drvdata(dev);
struct ucb1x00_dev *udev;
if (!ucb->irq_wake && pdata && pdata->reset)
pdata->reset(UCB_RST_RESUME);
ucb1x00_enable(ucb);
ucb1x00_reg_write(ucb, UCB_IO_DATA, ucb->io_out);
ucb1x00_reg_write(ucb, UCB_IO_DIR, ucb->io_dir);
if (ucb->irq_wake) {
unsigned long flags;
raw_spin_lock_irqsave(&ucb->irq_lock, flags);
ucb1x00_reg_write(ucb, UCB_IE_RIS, ucb->irq_ris_enbl &
ucb->irq_mask);
ucb1x00_reg_write(ucb, UCB_IE_FAL, ucb->irq_fal_enbl &
ucb->irq_mask);
raw_spin_unlock_irqrestore(&ucb->irq_lock, flags);
disable_irq_wake(ucb->irq);
}
ucb1x00_disable(ucb);
mutex_lock(&ucb1x00_mutex);
list_for_each_entry(udev, &ucb->devs, dev_node) {
if (udev->drv->resume)
udev->drv->resume(udev);
}
mutex_unlock(&ucb1x00_mutex);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(ucb1x00_pm_ops, ucb1x00_suspend, ucb1x00_resume);
static struct mcp_driver ucb1x00_driver = {
.drv = {
.name = "ucb1x00",
.owner = THIS_MODULE,
.pm = &ucb1x00_pm_ops,
},
.probe = ucb1x00_probe,
.remove = ucb1x00_remove,
};
static int __init ucb1x00_init(void)
{
int ret = class_register(&ucb1x00_class);
if (ret == 0) {
ret = mcp_driver_register(&ucb1x00_driver);
if (ret)
class_unregister(&ucb1x00_class);
}
return ret;
}
static void __exit ucb1x00_exit(void)
{
mcp_driver_unregister(&ucb1x00_driver);
class_unregister(&ucb1x00_class);
}
module_init(ucb1x00_init);
module_exit(ucb1x00_exit);
EXPORT_SYMBOL(ucb1x00_io_set_dir);
EXPORT_SYMBOL(ucb1x00_io_write);
EXPORT_SYMBOL(ucb1x00_io_read);
EXPORT_SYMBOL(ucb1x00_adc_enable);
EXPORT_SYMBOL(ucb1x00_adc_read);
EXPORT_SYMBOL(ucb1x00_adc_disable);
EXPORT_SYMBOL(ucb1x00_register_driver);
EXPORT_SYMBOL(ucb1x00_unregister_driver);
MODULE_ALIAS("mcp:ucb1x00");
MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
MODULE_DESCRIPTION("UCB1x00 core driver");
MODULE_LICENSE("GPL");