markdownn/2022-5-13 缓和曲线计算.md

4.5 KiB
Raw Permalink Blame History

title tags category slug grammar_abbr grammar_table grammar_defList grammar_emoji grammar_footnote grammar_ins grammar_mark grammar_sub grammar_sup grammar_checkbox grammar_mathjax grammar_flow grammar_sequence grammar_plot grammar_code grammar_highlight grammar_html grammar_linkify grammar_typographer grammar_video grammar_audio grammar_attachment grammar_mermaid grammar_classy grammar_cjkEmphasis grammar_cjkRuby grammar_center grammar_align grammar_tableExtra grammar_mindmap renderNumberedHeading
2022-5-13 缓和曲线计算 毕设 /杂乱资料 miscellany true true true true true true true true true true true true true true true true true true true true true true true true true true true true true true true

综览

计算曲线要素

图 1

图 2

图 3

已知(输入要素):!$\rm \alpha_{1}, \alpha_{2}$!$\rm R_{1}, R_{2}$!$\rm L_{s1}, L_{s2}$缓和曲线长度。

求圆曲线的参数

\begin{align}
T &= R\, tan\frac{\alpha}{2}\label{eq:eq1}\\
L &= R\, \alpha \, \frac{\pi}{180^\circ}\label{eq:eq2}\\
E &= R\, (sec\frac{\alpha}{2} - 1)\label{eq:eq3}\\
q &= 2\, T - L\label{eq:eq4}
\end{align}

得出!$T_{1},T_{2},L_{1},L_{2},E_{1},E_{2},q_{1},q_{2}$。 这里,!$\alpha = \alpha - 2\,\beta_{0}$

求缓和曲线的参数

\begin{align}
m &= \frac{L_{s}}{2} - \frac{L_{s}^3}{240\, R^2}\label{}\\
P &= \frac{L_{s}^2}{24\, R}\label{}\\
\beta_{0}&=\frac{L_{s}}{2\, R}\frac{180^\circ}{\pi}
\end{align}

然后计算缓和曲线参数:==这里 #E91E63==的!$\alpha$是偏转角还是要减!$2\beta_{0}$

\begin{align}
T_{H} &= m + (R + P)\, tan\frac{\alpha}{2}\label{}\\
L_{H} &= \frac{\pi R}{180^\circ}(\alpha - 2\beta_{0}) + 2L_{s}\label{}\\
E_{H} &= (R+P)\,sec\frac{\alpha}{2}-R\label{}\\
q_{H} &=2T_{H} - L_{H}
\end{align}

计算方位角Azimuth

如==图 2 #F44336==所示以ZH点为例用JD0和JD1点坐标来计算。

\begin{equation}
\begin{aligned}
\alpha_{ZH1} = arctan\frac{Y_{JD1}-Y_{JD0}}{X_{JD1}-X_{JD0}}&=atan\frac{\Delta Y}{\Delta X}\label{}\\
\\
\text{when}\,\Delta Y>0\,\text{and}\,\Delta X>0, \alpha &= \alpha.\\
\text{when}\,\Delta Y>0\,\text{and}\,\Delta X<0, \alpha &= \alpha + 180^\circ.\\
\text{when}\,\Delta Y<0\,\text{and}\,\Delta X<0, \alpha &= \alpha + 180^\circ.\\
\text{when}\,\Delta Y<0\,\text{and}\,\Delta X>0, \alpha &= \alpha + 360^\circ.\\
\text{when}\,\Delta X=0, \alpha &= 90^\circ.\\
\text{when}\,\Delta Y=0, \alpha &= 0^\circ.
\end{aligned}    
\end{equation}

当然HZ1点就是用JD1和JD2来计算。

计算里程

已知!$K_{ZH1}=1000$,根据==图 2 #F44336==可得:

\begin{align}
K_{JD} &= K_{ZH} + T_{H}\label{}\\
K_{HY} &= K_{ZH}+L_{S}\\
K_{QZ} &= K_{ZH}+L_{S}+\frac{L_{H}}{2}\\
K_{YH} &= K_{HY}+L_{T}\\
K_{HZ} &= K_{YH} + L_{S}\\
\text{检验:}K_{JD}&=K_{QZ}+\frac{q_{H1}}{2}
\end{align}

计算坐标

设置间隔10K1=1010K2=1020K3=1030。 Li = 间隔*点号如L3 = 30。

计算切线坐标

以ZH为原点

1、当!$K_{i}$!$(K_{ZH1},K_{HY1})$

\begin{equation}
\left \{
\begin{aligned}
x_{i}&=L_{i}-\frac{L_{i}^5}{40R^2L_{s}^2}\\
y_{i}&=\frac{L_{i}^3}{6RL_{S}}
\end{aligned}
\right.
\end{equation}

2、当!$K_{i}$!$(K_{HY1},K_{YH1})$

\begin{equation}
\left \{
\begin{aligned}
x_{i}&=m+R\,sin\phi_{i}\\
y_{i}&=p+R\,(1-cos\phi_{i})
\end{aligned}
\right.
\end{equation}

其中,

\begin{equation}
\left \{
\begin{aligned}
\phi_{i}&=\beta_{0}+\frac{L_{i}-L_{s}}{R}\cdot\frac{180}{\pi}=\frac{L_{i}-0.5L_{s}}{R}\cdot\frac{180}{\pi}\\
L_{i}&=K_{i}-K_{ZH}
\end{aligned}
\right.
\end{equation}

以HZ为原点

!$K_{i}$!$(K_{HY1},K_{HZ1})$

\begin{equation}
\left \{
\begin{aligned}
x_{i}&=L_{i}-\frac{L_{i}^5}{40R^2L_{s}^2}\\
y_{i}&=\frac{L_{i}^3}{6RL_{S}}\\
L_{i}&=K_{HZ} - K_{i}
\end{aligned}
\right.
\end{equation}

计算ZH1、2点和HZ1、2点坐标根据JD1和JD2。

enter description here

enter description here

计算直线上的坐标

右偏

enter description here

左偏

上面公式中的yi用-yi代替。

计算x里坐标

enter description here enter description here

程序设计