postgis/deps/ryu/d2s_intrinsics.h
Raúl Marín 1343712277 Use the shortest representation when printing doubles
- Use the shortest representation (enough to guarantee roundtrip).
- Uses scientific notation for absolute numbers smaller than 1e-8. The previous behaviour was to output 0 for absolute values smaller than 1e-12 and fixed notation for anything bigger than that.
- Uses scientific notation for absolute numbers greater than 1e+15 (same behaviour).
- The precision parameter now also affects the scientific notation (before it was fixed [5-8]).
- All output functions now respect the requested precision (without any limits).
- The default precision is the same (9 for GeoJSON, 15 for everything else).

Many regress test changed mainly because of the fixes to the precision parameter, which is now respected as the amount of digits after the fixed point.

Closes https://github.com/postgis/postgis/pull/570
Closes #4660
2020-07-28 13:18:38 +02:00

223 lines
6.9 KiB
C

// Copyright 2018 Ulf Adams
//
// The contents of this file may be used under the terms of the Apache License,
// Version 2.0.
//
// (See accompanying file LICENSE-Apache or copy at
// http://www.apache.org/licenses/LICENSE-2.0)
//
// Alternatively, the contents of this file may be used under the terms of
// the Boost Software License, Version 1.0.
// (See accompanying file LICENSE-Boost or copy at
// https://www.boost.org/LICENSE_1_0.txt)
//
// Unless required by applicable law or agreed to in writing, this software
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.
#ifndef RYU_D2S_INTRINSICS_H
#define RYU_D2S_INTRINSICS_H
#include <assert.h>
#include <stdint.h>
// Defines RYU_32_BIT_PLATFORM if applicable.
#include "ryu/common.h"
// ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined.
// Let's do the same for now.
#if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS)
#define HAS_UINT128
#elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
#define HAS_64_BIT_INTRINSICS
#endif
#if defined(HAS_UINT128)
typedef __uint128_t uint128_t;
#endif
#if defined(HAS_64_BIT_INTRINSICS)
#include <intrin.h>
static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) {
return _umul128(a, b, productHi);
}
static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) {
// For the __shiftright128 intrinsic, the shift value is always
// modulo 64.
// In the current implementation of the double-precision version
// of Ryu, the shift value is always < 64. (In the case
// RYU_OPTIMIZE_SIZE == 0, the shift value is in the range [49, 58].
// Otherwise in the range [2, 59].)
// Check this here in case a future change requires larger shift
// values. In this case this function needs to be adjusted.
assert(dist < 64);
return __shiftright128(lo, hi, (unsigned char) dist);
}
#else // defined(HAS_64_BIT_INTRINSICS)
static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) {
// The casts here help MSVC to avoid calls to the __allmul library function.
const uint32_t aLo = (uint32_t)a;
const uint32_t aHi = (uint32_t)(a >> 32);
const uint32_t bLo = (uint32_t)b;
const uint32_t bHi = (uint32_t)(b >> 32);
const uint64_t b00 = (uint64_t)aLo * bLo;
const uint64_t b01 = (uint64_t)aLo * bHi;
const uint64_t b10 = (uint64_t)aHi * bLo;
const uint64_t b11 = (uint64_t)aHi * bHi;
const uint32_t b00Lo = (uint32_t)b00;
const uint32_t b00Hi = (uint32_t)(b00 >> 32);
const uint64_t mid1 = b10 + b00Hi;
const uint32_t mid1Lo = (uint32_t)(mid1);
const uint32_t mid1Hi = (uint32_t)(mid1 >> 32);
const uint64_t mid2 = b01 + mid1Lo;
const uint32_t mid2Lo = (uint32_t)(mid2);
const uint32_t mid2Hi = (uint32_t)(mid2 >> 32);
const uint64_t pHi = b11 + mid1Hi + mid2Hi;
const uint64_t pLo = ((uint64_t)mid2Lo << 32) | b00Lo;
*productHi = pHi;
return pLo;
}
static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) {
// We don't need to handle the case dist >= 64 here (see above).
assert(dist < 64);
#if defined(RYU_OPTIMIZE_SIZE) || !defined(RYU_32_BIT_PLATFORM)
assert(dist > 0);
return (hi << (64 - dist)) | (lo >> dist);
#else
// Avoid a 64-bit shift by taking advantage of the range of shift values.
assert(dist >= 32);
return (hi << (64 - dist)) | ((uint32_t)(lo >> 32) >> (dist - 32));
#endif
}
#endif // defined(HAS_64_BIT_INTRINSICS)
#if defined(RYU_32_BIT_PLATFORM)
// Returns the high 64 bits of the 128-bit product of a and b.
static inline uint64_t umulh(const uint64_t a, const uint64_t b) {
// Reuse the umul128 implementation.
// Optimizers will likely eliminate the instructions used to compute the
// low part of the product.
uint64_t hi;
umul128(a, b, &hi);
return hi;
}
// On 32-bit platforms, compilers typically generate calls to library
// functions for 64-bit divisions, even if the divisor is a constant.
//
// E.g.:
// https://bugs.llvm.org/show_bug.cgi?id=37932
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=17958
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=37443
//
// The functions here perform division-by-constant using multiplications
// in the same way as 64-bit compilers would do.
//
// NB:
// The multipliers and shift values are the ones generated by clang x64
// for expressions like x/5, x/10, etc.
static inline uint64_t div5(const uint64_t x) {
return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 2;
}
static inline uint64_t div10(const uint64_t x) {
return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 3;
}
static inline uint64_t div100(const uint64_t x) {
return umulh(x >> 2, 0x28F5C28F5C28F5C3u) >> 2;
}
static inline uint64_t div1e8(const uint64_t x) {
return umulh(x, 0xABCC77118461CEFDu) >> 26;
}
static inline uint64_t div1e9(const uint64_t x) {
return umulh(x >> 9, 0x44B82FA09B5A53u) >> 11;
}
static inline uint32_t mod1e9(const uint64_t x) {
// Avoid 64-bit math as much as possible.
// Returning (uint32_t) (x - 1000000000 * div1e9(x)) would
// perform 32x64-bit multiplication and 64-bit subtraction.
// x and 1000000000 * div1e9(x) are guaranteed to differ by
// less than 10^9, so their highest 32 bits must be identical,
// so we can truncate both sides to uint32_t before subtracting.
// We can also simplify (uint32_t) (1000000000 * div1e9(x)).
// We can truncate before multiplying instead of after, as multiplying
// the highest 32 bits of div1e9(x) can't affect the lowest 32 bits.
return ((uint32_t) x) - 1000000000 * ((uint32_t) div1e9(x));
}
#else // defined(RYU_32_BIT_PLATFORM)
static inline uint64_t div5(const uint64_t x) {
return x / 5;
}
static inline uint64_t div10(const uint64_t x) {
return x / 10;
}
static inline uint64_t div100(const uint64_t x) {
return x / 100;
}
static inline uint64_t div1e8(const uint64_t x) {
return x / 100000000;
}
static inline uint64_t div1e9(const uint64_t x) {
return x / 1000000000;
}
static inline uint32_t mod1e9(const uint64_t x) {
return (uint32_t) (x - 1000000000 * div1e9(x));
}
#endif // defined(RYU_32_BIT_PLATFORM)
static inline uint32_t pow5Factor(uint64_t value) {
uint32_t count = 0;
for (;;) {
assert(value != 0);
const uint64_t q = div5(value);
const uint32_t r = ((uint32_t) value) - 5 * ((uint32_t) q);
if (r != 0) {
break;
}
value = q;
++count;
}
return count;
}
// Returns true if value is divisible by 5^p.
static inline bool multipleOfPowerOf5(const uint64_t value, const uint32_t p) {
// I tried a case distinction on p, but there was no performance difference.
return pow5Factor(value) >= p;
}
// Returns true if value is divisible by 2^p.
static inline bool multipleOfPowerOf2(const uint64_t value, const uint32_t p) {
assert(value != 0);
// return __builtin_ctzll(value) >= p;
return (value & ((1ull << p) - 1)) == 0;
}
#endif // RYU_D2S_INTRINSICS_H