blender_test/intern/cycles/util/color.h
Brecht Van Lommel e1b3d91127 Refactor: replace Cycles sse/avx types by vectorized float4/int4/float8/int8
The distinction existed for legacy reasons, to easily port of Embree
intersection code without affecting the main vector types. However we are now
using SIMD for these types as well, so no good reason to keep the distinction.

Also more consistently pass these vector types by value in inline functions.
Previously it was partially changed for functions used by Metal to avoid having
to add address space qualifiers, simple to do it everywhere.

Also removes function declarations for vector math headers, serves no real
purpose.

Differential Revision: https://developer.blender.org/D16146
2022-11-08 12:28:40 +01:00

332 lines
7.6 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#ifndef __UTIL_COLOR_H__
#define __UTIL_COLOR_H__
#include "util/math.h"
#include "util/types.h"
#if !defined(__KERNEL_GPU__) && defined(__KERNEL_SSE2__)
# include "util/simd.h"
#endif
CCL_NAMESPACE_BEGIN
ccl_device uchar float_to_byte(float val)
{
return ((val <= 0.0f) ? 0 :
((val > (1.0f - 0.5f / 255.0f)) ? 255 : (uchar)((255.0f * val) + 0.5f)));
}
ccl_device uchar4 color_float_to_byte(float3 c)
{
uchar r, g, b;
r = float_to_byte(c.x);
g = float_to_byte(c.y);
b = float_to_byte(c.z);
return make_uchar4(r, g, b, 0);
}
ccl_device uchar4 color_float4_to_uchar4(float4 c)
{
uchar r, g, b, a;
r = float_to_byte(c.x);
g = float_to_byte(c.y);
b = float_to_byte(c.z);
a = float_to_byte(c.w);
return make_uchar4(r, g, b, a);
}
ccl_device_inline float3 color_byte_to_float(uchar4 c)
{
return make_float3(c.x * (1.0f / 255.0f), c.y * (1.0f / 255.0f), c.z * (1.0f / 255.0f));
}
ccl_device_inline float4 color_uchar4_to_float4(uchar4 c)
{
return make_float4(
c.x * (1.0f / 255.0f), c.y * (1.0f / 255.0f), c.z * (1.0f / 255.0f), c.w * (1.0f / 255.0f));
}
ccl_device float color_srgb_to_linear(float c)
{
if (c < 0.04045f)
return (c < 0.0f) ? 0.0f : c * (1.0f / 12.92f);
else
return powf((c + 0.055f) * (1.0f / 1.055f), 2.4f);
}
ccl_device float color_linear_to_srgb(float c)
{
if (c < 0.0031308f)
return (c < 0.0f) ? 0.0f : c * 12.92f;
else
return 1.055f * powf(c, 1.0f / 2.4f) - 0.055f;
}
ccl_device float3 rgb_to_hsv(float3 rgb)
{
float cmax, cmin, h, s, v, cdelta;
float3 c;
cmax = fmaxf(rgb.x, fmaxf(rgb.y, rgb.z));
cmin = min(rgb.x, min(rgb.y, rgb.z));
cdelta = cmax - cmin;
v = cmax;
if (cmax != 0.0f) {
s = cdelta / cmax;
}
else {
s = 0.0f;
h = 0.0f;
}
if (s != 0.0f) {
float3 cmax3 = make_float3(cmax, cmax, cmax);
c = (cmax3 - rgb) / cdelta;
if (rgb.x == cmax)
h = c.z - c.y;
else if (rgb.y == cmax)
h = 2.0f + c.x - c.z;
else
h = 4.0f + c.y - c.x;
h /= 6.0f;
if (h < 0.0f)
h += 1.0f;
}
else {
h = 0.0f;
}
return make_float3(h, s, v);
}
ccl_device float3 hsv_to_rgb(float3 hsv)
{
float i, f, p, q, t, h, s, v;
float3 rgb;
h = hsv.x;
s = hsv.y;
v = hsv.z;
if (s != 0.0f) {
if (h == 1.0f)
h = 0.0f;
h *= 6.0f;
i = floorf(h);
f = h - i;
rgb = make_float3(f, f, f);
p = v * (1.0f - s);
q = v * (1.0f - (s * f));
t = v * (1.0f - (s * (1.0f - f)));
if (i == 0.0f)
rgb = make_float3(v, t, p);
else if (i == 1.0f)
rgb = make_float3(q, v, p);
else if (i == 2.0f)
rgb = make_float3(p, v, t);
else if (i == 3.0f)
rgb = make_float3(p, q, v);
else if (i == 4.0f)
rgb = make_float3(t, p, v);
else
rgb = make_float3(v, p, q);
}
else {
rgb = make_float3(v, v, v);
}
return rgb;
}
ccl_device float3 rgb_to_hsl(float3 rgb)
{
float cmax, cmin, h, s, l;
cmax = fmaxf(rgb.x, fmaxf(rgb.y, rgb.z));
cmin = min(rgb.x, min(rgb.y, rgb.z));
l = min(1.0f, (cmax + cmin) / 2.0f);
if (cmax == cmin) {
h = s = 0.0f; /* achromatic */
}
else {
float cdelta = cmax - cmin;
s = l > 0.5f ? cdelta / (2.0f - cmax - cmin) : cdelta / (cmax + cmin);
if (cmax == rgb.x) {
h = (rgb.y - rgb.z) / cdelta + (rgb.y < rgb.z ? 6.0f : 0.0f);
}
else if (cmax == rgb.y) {
h = (rgb.z - rgb.x) / cdelta + 2.0f;
}
else {
h = (rgb.x - rgb.y) / cdelta + 4.0f;
}
}
h /= 6.0f;
return make_float3(h, s, l);
}
ccl_device float3 hsl_to_rgb(float3 hsl)
{
float nr, ng, nb, chroma, h, s, l;
h = hsl.x;
s = hsl.y;
l = hsl.z;
nr = fabsf(h * 6.0f - 3.0f) - 1.0f;
ng = 2.0f - fabsf(h * 6.0f - 2.0f);
nb = 2.0f - fabsf(h * 6.0f - 4.0f);
nr = clamp(nr, 0.0f, 1.0f);
nb = clamp(nb, 0.0f, 1.0f);
ng = clamp(ng, 0.0f, 1.0f);
chroma = (1.0f - fabsf(2.0f * l - 1.0f)) * s;
return make_float3((nr - 0.5f) * chroma + l, (ng - 0.5f) * chroma + l, (nb - 0.5f) * chroma + l);
}
ccl_device float3 xyY_to_xyz(float x, float y, float Y)
{
float X, Z;
if (y != 0.0f)
X = (x / y) * Y;
else
X = 0.0f;
if (y != 0.0f && Y != 0.0f)
Z = (1.0f - x - y) / y * Y;
else
Z = 0.0f;
return make_float3(X, Y, Z);
}
#ifdef __KERNEL_SSE2__
/*
* Calculate initial guess for arg^exp based on float representation
* This method gives a constant bias,
* which can be easily compensated by multiplication with bias_coeff.
* Gives better results for exponents near 1 (e. g. 4/5).
* exp = exponent, encoded as uint32_t
* e2coeff = 2^(127/exponent - 127) * bias_coeff^(1/exponent), encoded as uint32_t
*/
template<unsigned exp, unsigned e2coeff> ccl_device_inline float4 fastpow(const float4 &arg)
{
float4 ret = arg * cast(make_int4(e2coeff));
ret = make_float4(cast(ret));
ret = ret * cast(make_int4(exp));
ret = cast(make_int4(ret));
return ret;
}
/* Improve x ^ 1.0f/5.0f solution with Newton-Raphson method */
ccl_device_inline float4 improve_5throot_solution(const float4 &old_result, const float4 &x)
{
float4 approx2 = old_result * old_result;
float4 approx4 = approx2 * approx2;
float4 t = x / approx4;
float4 summ = madd(make_float4(4.0f), old_result, t);
return summ * make_float4(1.0f / 5.0f);
}
/* Calculate powf(x, 2.4). Working domain: 1e-10 < x < 1e+10 */
ccl_device_inline float4 fastpow24(const float4 &arg)
{
/* max, avg and |avg| errors were calculated in gcc without FMA instructions
* The final precision should be better than powf in glibc */
/* Calculate x^4/5, coefficient 0.994 was constructed manually to minimize avg error */
/* 0x3F4CCCCD = 4/5 */
/* 0x4F55A7FB = 2^(127/(4/5) - 127) * 0.994^(1/(4/5)) */
float4 x = fastpow<0x3F4CCCCD, 0x4F55A7FB>(
arg); // error max = 0.17 avg = 0.0018 |avg| = 0.05
float4 arg2 = arg * arg;
float4 arg4 = arg2 * arg2;
/* error max = 0.018 avg = 0.0031 |avg| = 0.0031 */
x = improve_5throot_solution(x, arg4);
/* error max = 0.00021 avg = 1.6e-05 |avg| = 1.6e-05 */
x = improve_5throot_solution(x, arg4);
/* error max = 6.1e-07 avg = 5.2e-08 |avg| = 1.1e-07 */
x = improve_5throot_solution(x, arg4);
return x * (x * x);
}
ccl_device float4 color_srgb_to_linear(const float4 &c)
{
int4 cmp = c < make_float4(0.04045f);
float4 lt = max(c * make_float4(1.0f / 12.92f), make_float4(0.0f));
float4 gtebase = (c + make_float4(0.055f)) * make_float4(1.0f / 1.055f); /* fma */
float4 gte = fastpow24(gtebase);
return select(cmp, lt, gte);
}
#endif /* __KERNEL_SSE2__ */
ccl_device float3 color_srgb_to_linear_v3(float3 c)
{
return make_float3(
color_srgb_to_linear(c.x), color_srgb_to_linear(c.y), color_srgb_to_linear(c.z));
}
ccl_device float3 color_linear_to_srgb_v3(float3 c)
{
return make_float3(
color_linear_to_srgb(c.x), color_linear_to_srgb(c.y), color_linear_to_srgb(c.z));
}
ccl_device float4 color_linear_to_srgb_v4(float4 c)
{
return make_float4(
color_linear_to_srgb(c.x), color_linear_to_srgb(c.y), color_linear_to_srgb(c.z), c.w);
}
ccl_device float4 color_srgb_to_linear_v4(float4 c)
{
#ifdef __KERNEL_SSE2__
float4 r = c;
r = color_srgb_to_linear(r);
r.w = c.w;
return r;
#else
return make_float4(
color_srgb_to_linear(c.x), color_srgb_to_linear(c.y), color_srgb_to_linear(c.z), c.w);
#endif
}
ccl_device float3 color_highlight_compress(float3 color, ccl_private float3 *variance)
{
color += one_float3();
if (variance) {
*variance *= sqr(one_float3() / color);
}
return log(color);
}
ccl_device float3 color_highlight_uncompress(float3 color)
{
return exp(color) - one_float3();
}
CCL_NAMESPACE_END
#endif /* __UTIL_COLOR_H__ */