blender_test/intern/cycles/util/transform.h
Patrick Mours e6b38deb9d Cycles: Add basic support for using OSL with OptiX
This patch  generalizes the OSL support in Cycles to include GPU
device types and adds an implementation for that in the OptiX
device. There are some caveats still, including simplified texturing
due to lack of OIIO on the GPU and a few missing OSL intrinsics.

Note that this is incomplete and missing an update to the OSL
library before being enabled! The implementation is already
committed now to simplify further development.

Maniphest Tasks: T101222

Differential Revision: https://developer.blender.org/D15902
2022-11-09 15:30:21 +01:00

529 lines
15 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#ifndef __UTIL_TRANSFORM_H__
#define __UTIL_TRANSFORM_H__
#ifndef __KERNEL_GPU__
# include <string.h>
#endif
#include "util/math.h"
#include "util/types.h"
#ifndef __KERNEL_GPU__
# include "util/system.h"
#endif
CCL_NAMESPACE_BEGIN
/* Affine transformation, stored as 4x3 matrix. */
typedef struct Transform {
float4 x, y, z;
#ifndef __KERNEL_GPU__
float4 operator[](int i) const
{
return *(&x + i);
}
float4 &operator[](int i)
{
return *(&x + i);
}
#endif
} Transform;
/* Transform decomposed in rotation/translation/scale. we use the same data
* structure as Transform, and tightly pack decomposition into it. first the
* rotation (4), then translation (3), then 3x3 scale matrix (9). */
typedef struct DecomposedTransform {
float4 x, y, z, w;
} DecomposedTransform;
CCL_NAMESPACE_END
#include "util/transform_inverse.h"
CCL_NAMESPACE_BEGIN
/* Functions */
#ifdef __KERNEL_METAL__
/* transform_point specialized for ccl_global */
ccl_device_inline float3 transform_point(ccl_global const Transform *t, const float3 a)
{
ccl_global const float3x3 &b(*(ccl_global const float3x3 *)t);
return (a * b).xyz + make_float3(t->x.w, t->y.w, t->z.w);
}
#endif
ccl_device_inline float3 transform_point(ccl_private const Transform *t, const float3 a)
{
/* TODO(sergey): Disabled for now, causes crashes in certain cases. */
#if defined(__KERNEL_SSE__) && defined(__KERNEL_SSE2__)
const float4 aa(a.m128);
float4 x(_mm_loadu_ps(&t->x.x));
float4 y(_mm_loadu_ps(&t->y.x));
float4 z(_mm_loadu_ps(&t->z.x));
float4 w(_mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f));
_MM_TRANSPOSE4_PS(x.m128, y.m128, z.m128, w.m128);
float4 tmp = w;
tmp = madd(shuffle<2>(aa), z, tmp);
tmp = madd(shuffle<1>(aa), y, tmp);
tmp = madd(shuffle<0>(aa), x, tmp);
return float3(tmp.m128);
#elif defined(__KERNEL_METAL__)
ccl_private const float3x3 &b(*(ccl_private const float3x3 *)t);
return (a * b).xyz + make_float3(t->x.w, t->y.w, t->z.w);
#else
float3 c = make_float3(a.x * t->x.x + a.y * t->x.y + a.z * t->x.z + t->x.w,
a.x * t->y.x + a.y * t->y.y + a.z * t->y.z + t->y.w,
a.x * t->z.x + a.y * t->z.y + a.z * t->z.z + t->z.w);
return c;
#endif
}
ccl_device_inline float3 transform_direction(ccl_private const Transform *t, const float3 a)
{
#if defined(__KERNEL_SSE__) && defined(__KERNEL_SSE2__)
const float4 aa(a.m128);
float4 x(_mm_loadu_ps(&t->x.x));
float4 y(_mm_loadu_ps(&t->y.x));
float4 z(_mm_loadu_ps(&t->z.x));
float4 w(_mm_setzero_ps());
_MM_TRANSPOSE4_PS(x.m128, y.m128, z.m128, w.m128);
float4 tmp = shuffle<2>(aa) * z;
tmp = madd(shuffle<1>(aa), y, tmp);
tmp = madd(shuffle<0>(aa), x, tmp);
return float3(tmp.m128);
#elif defined(__KERNEL_METAL__)
ccl_private const float3x3 &b(*(ccl_private const float3x3 *)t);
return (a * b).xyz;
#else
float3 c = make_float3(a.x * t->x.x + a.y * t->x.y + a.z * t->x.z,
a.x * t->y.x + a.y * t->y.y + a.z * t->y.z,
a.x * t->z.x + a.y * t->z.y + a.z * t->z.z);
return c;
#endif
}
ccl_device_inline float3 transform_direction_transposed(ccl_private const Transform *t,
const float3 a)
{
float3 x = make_float3(t->x.x, t->y.x, t->z.x);
float3 y = make_float3(t->x.y, t->y.y, t->z.y);
float3 z = make_float3(t->x.z, t->y.z, t->z.z);
return make_float3(dot(x, a), dot(y, a), dot(z, a));
}
ccl_device_inline Transform make_transform(float a,
float b,
float c,
float d,
float e,
float f,
float g,
float h,
float i,
float j,
float k,
float l)
{
Transform t;
t.x.x = a;
t.x.y = b;
t.x.z = c;
t.x.w = d;
t.y.x = e;
t.y.y = f;
t.y.z = g;
t.y.w = h;
t.z.x = i;
t.z.y = j;
t.z.z = k;
t.z.w = l;
return t;
}
ccl_device_inline Transform euler_to_transform(const float3 euler)
{
float cx = cosf(euler.x);
float cy = cosf(euler.y);
float cz = cosf(euler.z);
float sx = sinf(euler.x);
float sy = sinf(euler.y);
float sz = sinf(euler.z);
Transform t;
t.x.x = cy * cz;
t.y.x = cy * sz;
t.z.x = -sy;
t.x.y = sy * sx * cz - cx * sz;
t.y.y = sy * sx * sz + cx * cz;
t.z.y = cy * sx;
t.x.z = sy * cx * cz + sx * sz;
t.y.z = sy * cx * sz - sx * cz;
t.z.z = cy * cx;
t.x.w = t.y.w = t.z.w = 0.0f;
return t;
}
/* Constructs a coordinate frame from a normalized normal. */
ccl_device_inline Transform make_transform_frame(float3 N)
{
const float3 dx0 = cross(make_float3(1.0f, 0.0f, 0.0f), N);
const float3 dx1 = cross(make_float3(0.0f, 1.0f, 0.0f), N);
const float3 dx = normalize((dot(dx0, dx0) > dot(dx1, dx1)) ? dx0 : dx1);
const float3 dy = normalize(cross(N, dx));
return make_transform(dx.x, dx.y, dx.z, 0.0f, dy.x, dy.y, dy.z, 0.0f, N.x, N.y, N.z, 0.0f);
}
#if !defined(__KERNEL_METAL__)
ccl_device_inline Transform operator*(const Transform a, const Transform b)
{
float4 c_x = make_float4(b.x.x, b.y.x, b.z.x, 0.0f);
float4 c_y = make_float4(b.x.y, b.y.y, b.z.y, 0.0f);
float4 c_z = make_float4(b.x.z, b.y.z, b.z.z, 0.0f);
float4 c_w = make_float4(b.x.w, b.y.w, b.z.w, 1.0f);
Transform t;
t.x = make_float4(dot(a.x, c_x), dot(a.x, c_y), dot(a.x, c_z), dot(a.x, c_w));
t.y = make_float4(dot(a.y, c_x), dot(a.y, c_y), dot(a.y, c_z), dot(a.y, c_w));
t.z = make_float4(dot(a.z, c_x), dot(a.z, c_y), dot(a.z, c_z), dot(a.z, c_w));
return t;
}
#endif
#ifndef __KERNEL_GPU__
ccl_device_inline Transform transform_zero()
{
Transform zero = {zero_float4(), zero_float4(), zero_float4()};
return zero;
}
ccl_device_inline void print_transform(const char *label, const Transform &t)
{
print_float4(label, t.x);
print_float4(label, t.y);
print_float4(label, t.z);
printf("\n");
}
ccl_device_inline Transform transform_translate(float3 t)
{
return make_transform(1, 0, 0, t.x, 0, 1, 0, t.y, 0, 0, 1, t.z);
}
ccl_device_inline Transform transform_translate(float x, float y, float z)
{
return transform_translate(make_float3(x, y, z));
}
ccl_device_inline Transform transform_scale(float3 s)
{
return make_transform(s.x, 0, 0, 0, 0, s.y, 0, 0, 0, 0, s.z, 0);
}
ccl_device_inline Transform transform_scale(float x, float y, float z)
{
return transform_scale(make_float3(x, y, z));
}
ccl_device_inline Transform transform_rotate(float angle, float3 axis)
{
float s = sinf(angle);
float c = cosf(angle);
float t = 1.0f - c;
axis = normalize(axis);
return make_transform(axis.x * axis.x * t + c,
axis.x * axis.y * t - s * axis.z,
axis.x * axis.z * t + s * axis.y,
0.0f,
axis.y * axis.x * t + s * axis.z,
axis.y * axis.y * t + c,
axis.y * axis.z * t - s * axis.x,
0.0f,
axis.z * axis.x * t - s * axis.y,
axis.z * axis.y * t + s * axis.x,
axis.z * axis.z * t + c,
0.0f);
}
/* Euler is assumed to be in XYZ order. */
ccl_device_inline Transform transform_euler(float3 euler)
{
return transform_rotate(euler.z, make_float3(0.0f, 0.0f, 1.0f)) *
transform_rotate(euler.y, make_float3(0.0f, 1.0f, 0.0f)) *
transform_rotate(euler.x, make_float3(1.0f, 0.0f, 0.0f));
}
ccl_device_inline Transform transform_identity()
{
return transform_scale(1.0f, 1.0f, 1.0f);
}
ccl_device_inline bool operator==(const Transform &A, const Transform &B)
{
return memcmp(&A, &B, sizeof(Transform)) == 0;
}
ccl_device_inline bool operator!=(const Transform &A, const Transform &B)
{
return !(A == B);
}
ccl_device_inline bool transform_equal_threshold(const Transform &A,
const Transform &B,
const float threshold)
{
for (int x = 0; x < 3; x++) {
for (int y = 0; y < 4; y++) {
if (fabsf(A[x][y] - B[x][y]) > threshold) {
return false;
}
}
}
return true;
}
ccl_device_inline float3 transform_get_column(const Transform *t, int column)
{
return make_float3(t->x[column], t->y[column], t->z[column]);
}
ccl_device_inline void transform_set_column(Transform *t, int column, float3 value)
{
t->x[column] = value.x;
t->y[column] = value.y;
t->z[column] = value.z;
}
Transform transform_transposed_inverse(const Transform &a);
ccl_device_inline bool transform_uniform_scale(const Transform &tfm, float &scale)
{
/* the epsilon here is quite arbitrary, but this function is only used for
* surface area and bump, where we expect it to not be so sensitive */
float eps = 1e-6f;
float sx = len_squared(float4_to_float3(tfm.x));
float sy = len_squared(float4_to_float3(tfm.y));
float sz = len_squared(float4_to_float3(tfm.z));
float stx = len_squared(transform_get_column(&tfm, 0));
float sty = len_squared(transform_get_column(&tfm, 1));
float stz = len_squared(transform_get_column(&tfm, 2));
if (fabsf(sx - sy) < eps && fabsf(sx - sz) < eps && fabsf(sx - stx) < eps &&
fabsf(sx - sty) < eps && fabsf(sx - stz) < eps) {
scale = sx;
return true;
}
return false;
}
ccl_device_inline bool transform_negative_scale(const Transform &tfm)
{
float3 c0 = transform_get_column(&tfm, 0);
float3 c1 = transform_get_column(&tfm, 1);
float3 c2 = transform_get_column(&tfm, 2);
return (dot(cross(c0, c1), c2) < 0.0f);
}
ccl_device_inline Transform transform_clear_scale(const Transform &tfm)
{
Transform ntfm = tfm;
transform_set_column(&ntfm, 0, normalize(transform_get_column(&ntfm, 0)));
transform_set_column(&ntfm, 1, normalize(transform_get_column(&ntfm, 1)));
transform_set_column(&ntfm, 2, normalize(transform_get_column(&ntfm, 2)));
return ntfm;
}
ccl_device_inline Transform transform_empty()
{
return make_transform(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
}
#endif
/* Motion Transform */
ccl_device_inline float4 quat_interpolate(float4 q1, float4 q2, float t)
{
/* Optix and MetalRT are using lerp to interpolate motion transformations. */
#if defined(__KERNEL_GPU_RAYTRACING__)
return normalize((1.0f - t) * q1 + t * q2);
#else /* defined(__KERNEL_GPU_RAYTRACING__) */
/* NOTE: this does not ensure rotation around shortest angle, q1 and q2
* are assumed to be matched already in transform_motion_decompose */
float costheta = dot(q1, q2);
/* possible optimization: it might be possible to precompute theta/qperp */
if (costheta > 0.9995f) {
/* linear interpolation in degenerate case */
return normalize((1.0f - t) * q1 + t * q2);
}
else {
/* slerp */
float theta = acosf(clamp(costheta, -1.0f, 1.0f));
float4 qperp = normalize(q2 - q1 * costheta);
float thetap = theta * t;
return q1 * cosf(thetap) + qperp * sinf(thetap);
}
#endif /* defined(__KERNEL_GPU_RAYTRACING__) */
}
#ifndef __KERNEL_GPU__
void transform_inverse_cpu_sse41(const Transform &tfm, Transform &itfm);
void transform_inverse_cpu_avx2(const Transform &tfm, Transform &itfm);
#endif
ccl_device_inline Transform transform_inverse(const Transform tfm)
{
/* Optimized transform implementations. */
#ifndef __KERNEL_GPU__
if (system_cpu_support_avx2()) {
Transform itfm;
transform_inverse_cpu_avx2(tfm, itfm);
return itfm;
}
else if (system_cpu_support_sse41()) {
Transform itfm;
transform_inverse_cpu_sse41(tfm, itfm);
return itfm;
}
#endif
return transform_inverse_impl(tfm);
}
ccl_device_inline void transform_compose(ccl_private Transform *tfm,
ccl_private const DecomposedTransform *decomp)
{
/* rotation */
float q0, q1, q2, q3, qda, qdb, qdc, qaa, qab, qac, qbb, qbc, qcc;
q0 = M_SQRT2_F * decomp->x.w;
q1 = M_SQRT2_F * decomp->x.x;
q2 = M_SQRT2_F * decomp->x.y;
q3 = M_SQRT2_F * decomp->x.z;
qda = q0 * q1;
qdb = q0 * q2;
qdc = q0 * q3;
qaa = q1 * q1;
qab = q1 * q2;
qac = q1 * q3;
qbb = q2 * q2;
qbc = q2 * q3;
qcc = q3 * q3;
float3 rotation_x = make_float3(1.0f - qbb - qcc, -qdc + qab, qdb + qac);
float3 rotation_y = make_float3(qdc + qab, 1.0f - qaa - qcc, -qda + qbc);
float3 rotation_z = make_float3(-qdb + qac, qda + qbc, 1.0f - qaa - qbb);
/* scale */
float3 scale_x = make_float3(decomp->y.w, decomp->z.z, decomp->w.y);
float3 scale_y = make_float3(decomp->z.x, decomp->z.w, decomp->w.z);
float3 scale_z = make_float3(decomp->z.y, decomp->w.x, decomp->w.w);
/* compose with translation */
tfm->x = make_float4(
dot(rotation_x, scale_x), dot(rotation_x, scale_y), dot(rotation_x, scale_z), decomp->y.x);
tfm->y = make_float4(
dot(rotation_y, scale_x), dot(rotation_y, scale_y), dot(rotation_y, scale_z), decomp->y.y);
tfm->z = make_float4(
dot(rotation_z, scale_x), dot(rotation_z, scale_y), dot(rotation_z, scale_z), decomp->y.z);
}
/* Interpolate from array of decomposed transforms. */
ccl_device void transform_motion_array_interpolate(ccl_private Transform *tfm,
ccl_global const DecomposedTransform *motion,
uint numsteps,
float time)
{
/* Figure out which steps we need to interpolate. */
int maxstep = numsteps - 1;
int step = min((int)(time * maxstep), maxstep - 1);
float t = time * maxstep - step;
ccl_global const DecomposedTransform *a = motion + step;
ccl_global const DecomposedTransform *b = motion + step + 1;
/* Interpolate rotation, translation and scale. */
DecomposedTransform decomp;
decomp.x = quat_interpolate(a->x, b->x, t);
decomp.y = (1.0f - t) * a->y + t * b->y;
decomp.z = (1.0f - t) * a->z + t * b->z;
decomp.w = (1.0f - t) * a->w + t * b->w;
/* Compose rotation, translation, scale into matrix. */
transform_compose(tfm, &decomp);
}
ccl_device_inline bool transform_isfinite_safe(ccl_private Transform *tfm)
{
return isfinite_safe(tfm->x) && isfinite_safe(tfm->y) && isfinite_safe(tfm->z);
}
ccl_device_inline bool transform_decomposed_isfinite_safe(ccl_private DecomposedTransform *decomp)
{
return isfinite_safe(decomp->x) && isfinite_safe(decomp->y) && isfinite_safe(decomp->z) &&
isfinite_safe(decomp->w);
}
#ifndef __KERNEL_GPU__
class BoundBox2D;
ccl_device_inline bool operator==(const DecomposedTransform &A, const DecomposedTransform &B)
{
return memcmp(&A, &B, sizeof(DecomposedTransform)) == 0;
}
float4 transform_to_quat(const Transform &tfm);
void transform_motion_decompose(DecomposedTransform *decomp, const Transform *motion, size_t size);
Transform transform_from_viewplane(BoundBox2D &viewplane);
#endif
/* TODO: This can be removed when we know if no devices will require explicit
* address space qualifiers for this case. */
#define transform_point_auto transform_point
#define transform_direction_auto transform_direction
#define transform_direction_transposed_auto transform_direction_transposed
CCL_NAMESPACE_END
#endif /* __UTIL_TRANSFORM_H__ */